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Abstract. The relationship between band structure and
the topology of the orbital interactions between neigh-
boring chemical units comprising several model one-
dimensional polymers with helical (screw-axis) symmetry
is analyzed. A perturbative model of orbital interactions
based on a tight binding implementation of the extended
Hiickel method is developed. The model accounts for
both the band topologies and the seemingly anomalous
band extrema within the Brillouin zone constructed
using the chemical repeat unit of the polymer.
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1 Introduction

There are some polymers in which helical (screw-axis)
symmetry is apparent. An example is trans-polyacetylene
(Scheme 1, 1), or the hypothetical chain of H, molecules
(Scheme 2, 2) (a pedagogical example).
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The chemical repeat unit in 1 is CH, in 2 H,. In each
case the translational repeat unit is obtained by doubling
the chemical repeat unit, ie. the translational repeat unit
contains two chemical units — 2 CH for 1 and 2 H in the
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case of 2. The primary motivation for our work is a
systematic exposition of the relationship between the
band structures of helical polymers and the topologies of
the orbital interactions between the chemical building
blocks of the polymers.

In the absence of level crossings, the band extrema for
one-dimensional polymers, by which we mean materials
with one-dimensional periodic potentials, i.e.

V) =V(+a)

where a is the translational period, always occur at either
the center or the edges of the Brillouin zone (BZ). In
contrast we note that this is not the case if we construct the
band structure for the Hy stack (Scheme 3, 3), (another
pedagogical example) using the chemical repeat unit.
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The band structure for 3 is shown in Fig. 1. The oc-
curence of extrema, such as those for bands I and II in
Fig. 1, that do not coincide with either the center or the
edges of the BZ for polymers with helical symmetry is
the second factor motivating our study of these systems.
As noted previously by Bozovic [1], such extrema may
arise in quasi-one-dimensional polymers constructed by
combining chemical units that are themselves either two-
or three-dimensional. The electron potential associated
with quasi-one-dimensional polymers is, in general, not
one-dimensional; however, it is periodic in one dimen-
sion i.e.

V(‘x7y’Z) = V('x’y7z+a) 9

where a is once more the translational repeat distance.

In the course of this study we develop a mathematical
formalism capable of accounting for the existence and
position of such extrema within the BZ. In order to
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Fig. 1. The band structure for an H, stack generated by the
repeated application of screw-axis symmetry with an associated 45°
rotation

maintain a focus on the relation between band structure
and the topology of the orbital interactions between
neighboring chemical units in a polymer, we chose to
construct our models using only hydrogen. By doing so
we avoid any complications arising from the symmetry
properties of individual atomic basis orbitals. The band
structure calculations were performed using a tight
binding scheme within a one-electron extended Hiickel
formalism [2]. The details of the calculations are given in
the Appendix.

2 Introducing translation-rotation symmetry
We begin our discussion by considering the one-

dimensional lattice with translational period, a shown
in Scheme 4.

The wavefunctions for this lattice have the “Bloch
form”,

¢ k) = T'Ui(x)e™™ (1)

on defining the translation operator, T", by the relation
T'Ui(x) = Ui(x + na) . (2)

In what follows the basis {U;} is the set of molecular
orbitals (MOs) contained within the unit cell. Consider
the band structure resulting from a side-on stacking of
hydrogen molecules as illustrated in Fig. 2. For this case
the basis {U;} consists of the bonding (¢) and anti-
bonding (¢*) molecular orbitals of a single hydrogen
molecule — the basic translational unit of the system.
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The H, stack is the simplest example of a one-
dimensional polymer which can be constructed by the
application of either pure translational symmetry or
translation—rotation symmetry. If we now generate the
H, stack using translation-rotation (screw-axis) sym-
metry, we obtain the band structure shown in Fig. 3.

Clearly the band structures for the H, stack shown in
Figs. 2 and 3 are different. In order to understand these
differences we must develop a mathematical formalism
to describe the wavefunctions of the H, stack generated
using a translation—rotation operator, S;. The operation
S, corresponds to a translation by 7, followed by a ro-
tation, o, about the translation axis. Scheme 5 illustrates
the one-dimensional stack of diatomics resulting from
the application of the operator S; i.e. a fourfold screw
axis, to a heteronuclear diatomic molecule. The rotation
is arbitrarily defined to be counterclockwise.

By analogy with Eq. (1) the set of symmetry-allowed
wavefunctions for a system with translation-rotation
symmetry has the general form

Gi(x, k') =Y ()" Us(x)e™ (3)
m

where, by analogy with the translational symmetry case,

we have defined a wavevector, k. We must now examine

the relation between k for the translational case and &’

for the translation—rotation case.

-
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Fig. 2. Band structure for a 1D chain of H, units stacked side-on
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Fig. 3. Band structure for a 1D chain of H; units stacked side-on.
The chain is generated using the translation-rotation symmetry
operator St

From Scheme 5 we note that if we apply S; four times
we end up with an operation equivalent to a single ap-
plication of the operator T, as defined by Eq. (2). In
general, we may proceed to connect the operators S and
T through a relation of the form

S)' =T, 4)

where v:%” is the number of translation-rotation

operations required to generate a full turn of the helix.
Using Eq. (4) we can write Eq. (1) in the form

ilx, k) =) (S)" Ui(x)e™ . (5)

Thus if Egs. (3) and (5) are to be equivalent for a
complete turn of the helix, as defined by Eq. (4), we must
have mv = n. Hence, the wavevectors k and &’ are related
by the expression

K = vk = (%)k . (6)

Equation (6) implies that the size of the BZ for
translation—rotation symmetry, which is defined as the
interval —2 < K< 2, scales linearly with the number of
translation—rotation operations, v, required to complete
a full turn of the helix [3]. By convention the BZ for the
case of translation—rotation symmetry is known as the
Jones zone (JZ) [4]. Consider, for example, the helix in
Scheme 5 (5) for which v = 4. The JZ for 5 is thus, by 6,
4 times larger than the BZ for the purely translational
case defined by the translational cell a.

Now that we have some understanding of how to map
between the BZ and the JZ representations of the band
structure let us now return to the case of the H, stack
discussed previously. On examination of the translational
and translation-rotation band structures shown in
Figs. 2 and 3, respectively, it is immediately apparent
that the BZ and JZ representations of the H, stack are
different. Indeed the antibonding (¢*) band “‘runs up”

from I (k = 0) to X (k =1I) in the case of translational
symmetry and “runs down” from I (K =0) to
X' (k' =2 =1) for translation-rotation symmetry.

We can understand this difference if we consider the
iconic band representations given in Figs. 2 and 3, where
we have used shaded and unshaded spheres to represent
H(ls) orbitals of opposite phase. The ¢* band is anti-
symmetric with respect to inversion about the center of
the H-H bond. Thus, for the case of translational sym-
metry the ¢* band becomes increasingly antibonding
between H; units in the stack on going from I' to X. The
reverse is true for the ¢* band in the JZ representation.

In contrast, the ¢ band — which is invariant with re-
spect to inversion about the H-H bond center — behaves
in an identical manner in both the BZ and the JZ
representations.

We have seen this kind of behavior before [5]. The =
bonding and antibonding bands in planar all-trans
polyisocyanide (Scheme 6, 6) run up on constructing the
BZ from a translational repeat unit consisting of a single
isocyanide. In contrast, the application of screw-axis
symmetry to a single isocyanide results in = bonding and
antibonding bands that run down from the center of the
BZ.

In the following discussions we investigate the simi-
larities and differences in band topology for JZ and BZ
representations of the electronic structure of several
model one-dimensional polymers and seek to under-
stand the conditions under which the JZ and BZ repre-
sentations are equivalent.

3 Investigating band topology for translation—rotation
symmetry

At this point in the discussion it proves useful to
investigate the band topologies in both the BZ and the
JZ representations for several simple one-dimensional
polymers closely related to the H, stack discussed
previously. From this point in the discussions we make
use of the relation E(k) = E(—k) and focus our attention
on the “irreducible” part of the BZ and JZ defined by
the intervals [I', X] and [I", X’] respectively.

We begin by again considering the band structure of
the H, stack, this time using a translational cell con-
taining not one but two H; units. We note that the BZ
for the ““doubled cell” is only half the width of that for
the single cell shown in Fig. 2 and is denoted by the
interval I' to X" (=%).



On remembering that the BZ representation is peri-
odic with a period equal to the width of the complete
BZ, i.e. =%, where a is the translational unit cell length, we
can check to see if the band structure for the double cell

“unfolds” to that for the case of a single H, molecule per
translational cell (Fig. 2). The extended zone or “un-
folded” band structure for the doubled translational cell
is shown in Fig. 4.

The bonding and antibonding bands for the transla-
tional cell shown in Fig. 2 can be identified amongst the
bands for the doubled cell shown in Fig. 4 on tracing out
monotonically increasing bands on the interval [0,2X"]
beginning at the points f and ¢ respectively.

Indeed we can trace out these bands by translating
sections of the band structure contained within the BZ
(X" <k <X")by 2X" =Z. Thus, we are able to unfold
the band structure for the doubled translational cell to
reproduce the band structure for the simple translational
cell and we conclude that they are in fact equivalent
representations of the electronic structure of the H;
stack as they must be.

Further, the ¢* band for the case of S, symmetry
(Fig. 3) can be identified as the monotonically decreas-
ing band running down from point a in Fig. 4 on the
interval T" to 2X”. Once more the bands for the JZ
representation can be generated by translating elements
of the band structure for the doubled translational cell
lying in the BZ. Thus, we conclude that the JZ repre-
sentation based on a single translational unit and the
BZ representation for a doubled translational cell
are equivalent.

Hence, it appears that in order to be consistent with
both translational and translation-rotation descriptions
of the H, stack based on a unit cell containing a single
H; unit, we should adopt the doubled translational cell
as our model. Before moving on it is useful to remember
that the doubled translational cell is equivalent to
one complete turn of the helix defined by the operator
S? — albeit a “paper helix” in the present case.
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Fig. 4. Band structure for the ! [(H,),] chain in the extended
Brillouin zone (BZ) representation
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We return to this conclusion later in the discussion
after we have had a chance to investigate the JZ and BZ
representations of the band structure for the one-
dimensional polymer resulting from a 90° rotation of
alternate H, units in the H, stack considered thusfar.
The ““alternating stack™ 7 represents the next level of
sophistication in our discussion as it extends into both
spatial dimensions orthogonal to the translational axis.
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We begin by considering the band structure for both
JZ and BZ representations of 7. The representations are
based on translation—rotation and pure translational cell
lengths of t and a = 21, respectively, and are shown in
Fig. 5. The BZ representation of 7 is shown for both the
first and second BZs ([I', X] and (X,2X], respectively) to
illustrate how the ¢ band unfolds to reproduce the ¢
band for the JZ representation [T — X'(=2X)].

On turning our attention to the doubly degenerate ¢*
band, we note a discrepency between the BZ and JZ
representations. For the case of pure translational sym-
metry we observe a monotonically increasing ¢* band
“running up” from the I' point, and for the case of
translation—rotation symmetry we observe that the ¢*
band runs down from I" towards the zone edge.

We can reconcile this difference if we adopt the con-
clusion made previously for the case of the nonalternate
H, stack. On considering the BZ representation of the
band structure for the “doubled” translational cell
(a = 47) shown in Fig. 6 we can identify both the ¢ and
¢* bands from the JZ representation. Further, we can

R

/\

\\/

|

I X 2X I

X'(=2X)

Fig. 5. Band structure representations of the electronic structure
of the alternating H, stack constructed from, on the left, a
translational unit cell comprising two H, units and on the right,
a single H; unit subject to translation-rotation symmetry



276

v
\
\/

SN EIN
et

-

N

r X7 2X(=X) 33X 4XU(EXD)

Fig. 6. Band structure of the alternating H, stack for a transla-
tional cell consisting of four H, units

also identify the second, monotonically decreasing, o
band for the purely translational case in Fig. 5.

The ¢ band in the JZ representation, a band running
up from the T point to the zone edge at X’ = 4X, can be
easily identified as a band running between the points d
and e in Fig. 6. The ¢* band — which traces the path
a — b — ¢ — exemplifies a quite different type of band
topology by “oscillating” between extrema whose energy
separation is determined by the strength of the orbital
interactions between hydrogen atoms on alternate H,
units in the stack. This is best illustrated by considering
the iconic representations of the bands at points a and b
shown in Fig. 6.

Thus, once more, it appears that in order to provide a
consistent representation of the electronic structure of a
material with translation-rotation symmetry using only
translational symmetry it is necessary to consider a
translational unit cell length equivalent to one complete
turn of the helix generated by the translation-rotation
symmetry.

4 The second dimension: two-dimensional repeat units

We now progress to the next level of complexity — the
relation between band topology and the symmetry of the
basic structural unit of the polymer. We chose to study
the electronic structure of polymers generated by stack-
ing square planar Hy units as illustrated in Scheme 8.

5% s
Lo

The stacking angle, 0, affords us the opportunity to
study the band structure as a continuous function of 6
for the transitions between pure translational symmetry
(0=%;n=0,1,2,3) and translation-rotation symme-
try.

But why study the square-planar H4 unit? Why not
study the stacking of planar Hj units or Hg units? The
answer to these questions is simply that the Hy unit is the
simplest structural unit that, by virtue of the symmetry it
possesses, illustrates the various band topologies we
have found to date for systems with translation-rotation
symmetry. Consider the sequence of band structures
shown in Fig. 7.

Each band structure corresponds to a particular value
of the stacking angle as defined by Scheme 8. On going
from left to right, the value of 0 increases and we observe
the emergence of several notable changes in the band
structure. We begin our analysis on the left-hand side of
Fig. 7 with the 0 = 0 case — an eclipsed stack of Hy units.
To understand the band structure we must first remind
ourselves of the form of the MOs of the Hy unit.

In Scheme 9 we have chosen to visualize the MOs of
the square-planar Hy unit in terms of contributions from
two orthogonal H, fragments. The construction of an
Hy4 unit from two H, units enables us to draw direct
parallels between the band structures for the Hy and H;
stacks. Proceding in this way we would expect that
bands I and IV for the § = 0 case should have the same
topology as the ¢ bands in the H, stacks since we are
able to decompose MOs I and IV into contributions
from the o orbitals on each of the H, fragments. Indeed

|

v

11,11

{
B
B

\

\

Fig. 7. Band structure for the Hy stack in the Jones zone (JZ)
representation as a function of the stacking angle, 6



bands I and IV run up from the I' point and have the
same shape as the ¢ band of the H, stack. Further,
bands II and III, which are degenerate throughout the
BZ for 0 = 0 on symmetry grounds, are analogous to the
a* band shown in Fig. 2 for the purely translational case.

Next we consider the 0 = £ case and the transition
from pure translational symmetry to translation-rota-
tion symmetry. The most striking change in the band
structure is the separation of the formerly degenerate
bands II and III to form a “‘hysteresis-loop”’-type band
structure with band extrema that no longer coincide with
the center and edges of the JZ. Previously we noted the
existence of similar extrema in the band structures of
one-dimensional carbon chains [6] — the backbone of
many organic polymers. In the case of polyethylene,
polyacetylene, and other polymers based on one-di-
mensional carbon chains, the occurence of band extrema
that do not coincide with either the center or the edges of
the BZ is the result of s—p mixing in the carbon skeleton.
Clearly s—p mixing cannot be responsible for the extrema
in Fig. 7.

For polymers such as the Hy stack 8, which possess
translational symmetry and no level crossings, band
extrema are found only at the center and edges of the
BZ. Thus, we now focus our efforts on understanding
why the band extrema no longer occur at the center and
edges of the JZ for the case of translation—rotation
symmetry.

In order to understand this behavior we must now
formalize somewhat our hypothesis that the topology of
bands II and III for the Hy stack may be reproduced by
considering the interaction of the ¢* bands of two in-
terpenetrating H, stacks. Consider the generic H; stack
10 defined by the translation, 7, and the stacking angle,
0. If we combine two H, stacks of the form 10 by
rotating one stack by 90° with respect to the other we
arrive at the Hy stack 11. The atoms belonging to each
H; chain in 11 are identified by the atom shading.

10

L Gesl ,I
s

In order to evaluate the band structure derived from
the ¢* bands of the interpenetrating H, stacks it is nec-
essary to consider how the ¢* orbital of an H, unit
interacts with the ¢* orbitals of neighboring H, units
in both stacks. In what follows we consider only the in-
teractions between the ¢* orbital of an H, fragment
within an Hy unit and the ¢* orbitals of the H, fragments
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in the nearest-neighbor Hy unit. This is a sufficiently good
approximation to allow us to develop a qualitative pic-
ture of how the stacking angle influences band topology.

We begin by writing an expression for the energy of
the i" band, E;(k,0), in the form

Ei(k,0) = E(0) + E{" (k,0) + EP (k,0) (7)

where the terms E ( ) (i=1, 2) define the energies of
the o* orbitals of the H, units abstracted from a single
H,4 molecule 8.

The 0-dependence of the zeroth-order terms, E( )(0)
is most clearly understood in terms of a mixing of MOs
IT and III for the Hy4 unit 9. The lack of symmetry planes
for the generic Hy stack 11 affords the opportunity for a
“remixing” of the ¢* orbitals on the H, fragments
comprising a single Hy4 unit of the stack. The orbital
mixing within an Hy unit is illustrated in Scheme 12.

Lo T =
i R o "
I _.-’_"\._/'I (-.--'I I‘\_____.l: " L e
H, = H, + H,
12

Thus, the degeneracy of the ¢* orbitals II and III for
the case of pure translational symmetry is simply a
special case of the more general nondegenerate case
defined by 0 # %F;n=0,1,2,3.

On choosing to construct the band structure of the H,
stack 7 by considering first the interaction between Hj;
units in a simple H, stack [denoted by E; () (k 0) in Eq. 7]
and subsequently the interaction between interpenetrat-
ing H, stacks [E§2)(k7 0) in Eq. 7] we may clearly identify
the interactions responsible for the changes in band to-
pology observed on varying the stacking angle in Fig. 7.

5 Tight binding models of band structure

We now introduce the tight binding formalism employed
throughout this study [2] before developing expressions
for the explicit 0- and k-dependence of the band energy
E;(k,0) defined by Eq. (7). Within the tight binding
formalism we seek a solution of the generalized eigen-
value equation

H(k, 0)Ci(k, 0) = ES(k, 0)Ci(k,0) | (8)

for each eigenstate, i, as a function of the wavevector, £,
and the stacking angle, 6. The overlap and Hamiltonian
matrices are defined by

0) = S(R,0)c*" (9)

and

H(k,0) = Y "H(R, 0)c** (10)

R

respectively. The index R =nt;n =0,1,2,... serves to
identify the individual Hy4 units within polymer 11.
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On choosing to consider only nearest-neighbor in-
teractions between Hy units we may write Egs. (9) and
(10) in the forms

S(k, 0) ~ $(0) + S(z, 0)e™* (11)
and
H(k, 0) ~ H(0) + H(z, 0)e™ | (12)

The zeroth-order Hamiltonian and overlap matrices,
H(0) and S(0), respectively, define the interaction
between the two ¢* basis functions associated with a
single Hy unit of the stack and give rise to the zeroth-
order energy term Eio)(()) in Eq. (7).

On choosing to construct the Hy stack from two
interpenetrating H, stacks, which can be in turn con-
structed from individual H, units, we may consider the
perturbation of the molecular H, problem — as defined
by the matrices S(z,0) 11 and H(z, 0) 12 — to be the sum
of two distinct perturbations. Consider the overlap
matrix, S(k, 0), in Eq. (11). The perturbation applied to
the molecular problem is written

zkr ZSH T, 0 ikt +ZSIJ zkr ,

J#

(13)

where i,j = {1,2}.

The first term on the right-hand side of Eq. (13) de-
scribes the interaction between the ¢* orbitals of the H,
units comprising a single Hy unit of the Hy stack 10 and
their nearest neighbors in their respective H, stacks.
In contrast, the second term on the right-hand side of
Eq. (13) describes the interaction between the ¢* orbitals
of the H, units in an Hy unit and the ¢* orbitals of the
H; units belonging to a different H, stack in the neigh-
boring Hy unit.

Thus, on constructing an expression analogous to
Eq. (13) for the perturbation applied to the Hamiltonian
Hﬁr, 0) in Eq. (12) we can define the energy corrections

EM and E® from Eq. (7) by the relations
Eﬁ”(k, 0) = Hy(z,0)e™ (i=1,2) , (14)
Hir(1.0)e ikt
Pk, 0) = '”(29>' , (15)
and
ke |2
2) _ [Hou(z, 0)e™|
2 (kag)—_w (16)

In Egs. (14), (15), and (16) we extracted the explicit
k-dependence of the band energies. We now turn our
attention to determining the explicit 0-dependence of the
matrix elements Hj;(t,0), and begin by considering
the 0-dependence of the corresponding overlap matrix
elements, Sj;(t,0).

Consider the overlap between the ¢* orbitals on
neighboring H; units of the H, stack 10. On defining the
overlap for the purely translational case, S(t,0) = S(1),
the overlap for the case of translation-rotation symme-
try (6 # 0) becomes

S(z,0) = S(t) cos(0) . (17)

Thus, for the ¢* orbitals of the H, units comprising
each Hy unit of stack 11 we may write

S,‘,‘(T, 0) = S[,‘(‘L’) COS(@) (l = 1, 2) . (18)

The explicit 0-dependence of the off-diagonal matrix
elements, Si»(z,0) and Sy (7, 0), is best seen by viewing
the Hy stack along the translational axis. Scheme 13 il-
lustrates the view along the translational axis for the Hy
stack 11 — the atom shading from Scheme 11 is retained
to enable easy identification of the atoms belonging to
the individual H, stacks.

13

The ¢* orbitals associated with the shaded and
nonshaded atoms are denoted by the indices 1 and 2,
respectively, and the off-diagonal overlaps are written

Si2(z,0) = Si2(7) cos (g - 9) — S15(7) sin(6) (19)
and
Sa1(1,0) = S5 (1) cos (g . 9) — S (1)sin(0) . (20)

Having extracted the explicit 0-dependence of the
matrix S(t,0)e** from Eq. (13) we can now rewrite
Egs. (14), (15), and (16) in terms of the corresponding
overlap matrix elements in Egs. (18), (19), and (20) using
the Wolfsberg—Helmholtz relation Eq. (21).

K
Hyy = B (le +HVV)SHV = KuvSuy, (21)
where S, = (¢,|¢,) and x = 1.75.
We thus obtain
EN (k,0) = kE (0)S;(1) cos(0)e™  (i=1,2) , (22)
|’€E ( )Sia(t )| ) 2kt

(k 0) = AE(0) sin“(0)e" " | (23)

and
(0) 2

Egz) (k, 0) - _ ‘KEz (0)S21(T)| SinZ(Q)eIri ) (24)

AEO)(0)

From Egs. (22), (23), and (24) we are finally able to
extract the functional form of the 0- and k-dependence
for bands II and III of the Hy stack.

First consider the case of pure translational symmetry
(0 = 0). On substituting expressions for the first- and



second-order corrections to the energy (Egs. 22, 23, 24)
in Eq. (7) we obtain

Ey(k,0) ~ E”(0) + kE\"S) (1) | (25)
and
Es(k,0) = (0) +KE O S0 (t)ee . (26)

Since for the case of pure translational symmetry we
do not observe a rehybridization of the ¢* bas1s ac-
cording to Scheme 12, we can write E(O)(O) E2 )(0).
Further, by symmetry, the overlap between ¢* orbitals
on neighboring H, units within the same H, stack is
the same for both stacks. Thus, we may write
S11(1) = S22(1), and Egs. (25) and (26) become

E\(k,0) = Es(k,0) = E\”(0)[1 + Sy, (t) cos(kt)] . (27)

Both the degeneracy of bands II and III for the purely
translational case and the ‘“‘cosine” band topology with
respect to the wavevector, k, are accounted for by
Eq. (27). The linear relation between the bandwidth
[defined by 2E( >( 0)xSi1(r) in Eq. 27] and the overlap
between ¢* orbitals in neighboring Hy units, Sj;(7), is in
accord with the general assertion that the bandwidth
increases with increasing overlap between neighboring
structural units in a polymer.

We now consider the transition from pure transla-
tional symmetry to translation-rotation symmetry and
focus on reproducing the topology of bands II and
I for 0=%,%,% in Fig. 7. In particular, we focus
on understanding the progressive distortion of the
pure cosine bands for the 0 =0 case that occurs on
increasing 0. We note the emergence of increasingly
prominent band extrema which, on increasing 0 on the
interval 0 < 0 <7, migrate from the zone edges to the
zone center. For the case of 0 on the interval 0 < 0 <%
both first- and second-order contributions to the band
energy, as defined by Egs. (22), (23), and (24), are
nonzero. In order to describe the band topology for

{(k.0) = - [ cos(®) cos(kt) + sinz(o) cos(2kt) | f(k9) =

|

f(k,0)

- [ cos(Q) cos(kt)
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0 <0 <3, we extract the following functional forms
from Eq. (7)

E\ (k,0) ~ E\” (0)[cos(0) cos(kt) + sin’(0) cos(2kt)] (28)
and
Es(k,0) ~ E (0)[cos(0) cos(kt) — sin(0) cos(2kt)] (29)

within the nearest-neighbor approximation

Equations (28) and (29) are plotted m Fig. 8 for
0= g,j“,’{ for a constant value of £}’ = E( The plots
in Fig. 8 strongly resemble the bdnd topologles given in
Fig. 7 for bands II and III of the Hy stack. As 0 increases
on the interval 0 < 6 < 7 we note a gradual reduction in
the cosine character of the bands and an increase in the
contribution from the cos(2kt) term, which has an ex-
tremum at the zone center (k = 7). Clearly the emer-
gence of band extrema that do not coincide with either
the zone center or the edge is the result of the interac-
tions between the H, units of the interpenetrating H,
chains given by the second-order correction to the band
energy.

Compared with the topology of bands II and III,
describing the 8- and k-dependence of band IV is rela-
tively straightforward. The analogy between interchain
interactions for a pair of interpenetrating H, chains and
the interactions between bands II and III is not required
for the case of the nondegenerate band IV. We need only
consider a first-order correction to the energy of the
form of Eq. (22), resulting in a band energy function of
the form

E(k,0) = EQ(O)[1 + kS()e™] (30)

where the Q-dependence of the zeroth order energy is a
result of rehybridization in MO IV and is analogous to
Scheme 12 for MOs II and III.

The form of Eq. (30) is the result of considering the
topology of band IV to be the result of two noninter-
acting, interpenetrating H, stacks. Thus, the form of the

- $ir(0) cos(2kt) |
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first-order correction in Eq. (30) is directly analogous to
that for bands II and III.

The 0 = 7 case for band IV is equivalent to the 0 =3
case for bands II and III in the sense that it represents an
“extremum’’ in the transition between pure translational
symmetry and translation-rotation symmetry. The fre-
quency with which band topologies recur as a function
of stacking angle depends on the number of nodal planes
posessed by the MOs giving rise to the bands. For in-
stance, the invariance of band I with respect to 0 is a
direct consequence of the lack of nodal planes in MO 1.
The symmetry about 0 = 7 for bands II and III is a direct
consequence of the single nodal plane in MOs II and III
and the symmetry about 0 =7 for band IV is a direct
result of the two nodal planes posessed by MO IV.

In general, the band resulting from an MO with n
nodal planes will exhibit “‘topological extrema’ for

T

Omaxzﬂ; n=20,1,2,...

(31)
on defining the purely translational case by 0 = 0.

The band structure for the Hg stack as a function of
stacking angle, is shown in Fig. 9 and serves to further
illustrate this point. The MOs for the Hg unit are anal-
ogous to the m orbitals of benzene and are given in

Scheme 14.
$

@ %
0:

The nodeless orbital I is analogous to MO 1 for Hy;
thus, band I for Hg is also invariant with respect to
stacking angle. MOs II and III for Hg¢ are analogous to
MOs II and III for Hy in the sense that both pairs of
MOs exhibit identical phase relationships with respect to
their single nodal plane. Similarly, MOs IV and V of Hg
and MO IV of Hy are asymmetric with respect to both
their nodal planes. By analogy with MO IV for Hy in 9,
MOs IV and V of Hg can be decomposed into contri-
butions on two orthogonal H, units. Thus, on consid-
ering the interactions between two interpenetrating H,
stacks, bands IV and V for Hg give rise to band struc-
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Fig. 9. Band structure of the Hg stack as a function of the stacking
angle

tures analogous to those for bands II and III of the Hy
stack.

Both pairs of bands (II, III) and (IV, V) for the Hg
stack 14 give rise to band structures with the anticipated
“topological extrema’ at 0; =% (one nodal plane) for
MOs II and III and 0, = 7 (two nodal planes) for MOs
IV and V, respectively.

The presence of three nodal planes in MO VI results
in a “topological extremum” for band VI at 0=Z%,
in agreement with the prediction from Eq. (31). The
topology of band VI is formally analogous to that of
band IV for the Hy stack and is also described by an
expression of the form of Eq. (30).

The topology of bands IV and VI of the Hy and Hg
stacks, respectively, are noteworthy in that the band
shapes at the topological extrema cannot be described
without extending our theoretical framework. The to-
pology of band IV for 0 = 7 is identical to the topology
of the ¢* band of the alternating H, stack shown in
Fig. 6. The “energy oscillation” on tracing out the path
a — b — c in Fig. 6 is the result of differences in inter-
action between next-nearest-neighbor H, units of the
stack. The same is true for band VI of the Hy stack and
band VI of the Hg stack. Since the interaction between
next-nearest-neighbor units in these polymers result in
bandwidths at least an order of magnitude less than the
first-order corrections (Eq. 30), we choose to retain our
focus on nearest-neighbor interactions and simply note
the origins of these minor energy perturbations.

We conclude this discussion of band topology by
examining the similarities and differences between JZ
and BZ representations of band structure for transla-
tional cells equivalent to one complete turn of the helix.
As noted for the H, stack, such representations can be
mapped onto one another and we concluded that the
JZ representation was equivalent to the BZ represen-
tation for a doubled translational cell. We now inves-
tigate such mappings for a more general class of
polymers with translation-rotation symmetry. Consider
a polymer with translation—rotation symmetry and a
stacking angle 0 = zn—", where n is the number of struc-
tural units per turn of the helix. The JZ can be mapped
onto an “extended BZ” consisting of the first n BZs
according to

IC,X'] — [T,nX] . (32)



The band structures for Hy and Hy stacks defined by
n = 3 and n = 4, respectively, are shown in Figs. 10 and
11 respectively in both the JZ and the extended BZ
representations.

The mapping between the extended BZ and JZ rep-
resentations might at first seem improbable given the
possible existence of band extrema that do not coincide
with either the zone center or the edges in the JZ
representation; however, on superimposing the band
structures for the Hy and Hy stacks in the JZ represen-
tation on the extended BZ defined by Eq. (32) we note
that the band extrema in the JZ representation coincide
with the boundaries between the individual BZs con-
tained within the extended BZ. If we subsequently apply
the translational symmetry of the helix (which corre-

L [H, ] JIH),
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Fig. 10. Band structure for the Hj stack with three units per
translational cell in the JZ (left) and extended BZ (right)

representations

4X (=X7)

LI, a1y, )

X r 2X

[

—

Fig. 11. Band structure for the Hs stack with four units per
translational cell in the the JZ (left) and extended BZ (right)
representation
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sponds to translations by 2X = %7“ in the extended BZ) to
the JZ representation we are able to map the band
structure in the JZ representation onto the extended BZ
band structure. Indeed by applying translational sym-
metry to the band extrema in the JZ representation we
are able to map all extrema to extrema at the center or
edge of the first BZ. Thus, we can now understand
the equivalence of band structures based on the JZ
and extended BZ representations for translational cells
corresponding to a complete turn of the helix.

6 Conclusion

In this contribution we have investigated the effect of
varying the size of the translational repeat unit and the
structure of the chemical repeat unit on the band
structure of quasi-one-dimensional polymers posessing
helical (screw-axis) symmetry.

We have demonstrated the equivalence of band
structure representations based on translation—rotation
symmetry (JZ representation) and pure translational
symmetry for the specific case of a translational cell
equivalent to a complete turn of the helix generated by
the intrinsic translation—rotation symmetry. Thus, when
evaluating the physical properties of polymers with
translation—rotation symmetry it is necessary to sample
either the JZ (I' = X’) or the BZ (I' — X) on con-
structing the polymer from a translational cell equivalent
to a complete turn of the helix.

We hope that our perturbative treatment of orbital
interactions in polymers with translation-rotation
symmetry will serve as a general model which can be
subsequently employed in the design of polymers with
specific electronic properties.

Appendix

The calculations were performed with a modified version
of the program Bind, which is available as part of the
YAeHMOP extended Hiickel package [7]. The extended
Hiickel parameters for hydrogen (H;, = —13.6 eV, (|,
= 1.300) were taken from previous studies by our group.

An H-H bond length of 0.8 A and an H,—H> sepa-
ration of 1.1 A were used to construct the H, stacks. The
Hjs, Hy, and Hg stacks were constructed using an H-H
bond length of 1.0 A and a separation of 1.2 A between
adjacent structural units in the stacks.
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